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Capnometry in the prehospital setting: are we using its
potential?
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Capnometry is a non-invasive monitoring technique which
allows fast and reliable insight into ventilation, circulation, and
metabolism. In the prehospital setting it is mainly used to
confirm correct tracheal tube placement. In addition it is a useful
indicator of efficient ongoing cardiopulmonary resuscitation
due to its correlation with cardiac output, and successful
resuscitation. It helps to confirm the diagnosis of pulmonary
thromboembolism and to sustain adequate ventilation in
mechanically ventilated patients. In patients with haemorrhage,
capnometry provides improved continuous haemodynamic
monitoring, insight into adequacy of tissue perfusion,
optimisation within current hypotensive fluid resuscitation
strategy, and prevention of shock progression through
controlled fluid administration.
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M
anaging the critically ill patient is one of
the most challenging aspects of prehospital
emergency care. The nature of work in

such circumstances demands methods which
rapidly recognise patients at risk. Capnometry, as
a non-invasive method, offers fast and reliable
insight into certain pathophysiological processes
and aids in the clinical evaluation of critically ill
patients, especially those in cardiac arrest and
requiring cardiopulmonary resuscitation, and
assists in the monitoring patients after endotra-
cheal intubation and mechanical ventilation.

For many years aggressive fluid resuscitation
has been a mainstay in the early treatment of the
patient in haemorrhagic shock. But in recent years
hypotensive fluid resuscitation before surgical
repair of uncontrolled thoraco-abdominal haemor-
rhage has proven to be superior over aggressive
fluid resuscitation. Methods like capnometry could
allow better additional discrimination between
therapeutic demands, leading to more precise fluid
resuscitation in the prehospital setting. In fact,
changes in end tidal carbon dioxide partial
pressure (PETCO2) promptly reflect circulatory
compromise and as such help in timely recognition
of patients at risk.

BASIC PHYSIOLOGY OF CARBON DIOXIDE
AND END TIDAL CARBON DIOXIDE
MEASUREMENTS
Carbon dioxide (CO2) is the product of cellular
aerobic metabolism. It diffuses easily from cells
into blood and erythrocytes and is transported
to the lungs by venous blood through the function
of cardiac output. Under normal conditions of

circulation and ventilation the partial pressure of
CO2 approaches 50 mm Hg at the level of tissues,
and 45 mm Hg in the venous blood. The difference
between the latter and alveolar CO2 partial
pressure (PACO2) which is around 40 mm Hg, is
responsible for diffusion of CO2 into the alveoli.
There, CO2 is eliminated from the body with
minute ventilation. Arterial CO2 partial pressure
(PaCO2) normally varies from 35–45 mm Hg.1

Approximately 7% of CO2 is dissolved in blood.
The rest of it diffuses into erythrocytes where 23%
of CO2 reversively bonds to haemoglobin (carba-
minohaemoglobin), and the rest forms carbonic
acid with water after carbonic anhydrase mediated
enzymatic reaction. Carbonic acid dissolves into
hydrogen and bicarbonate ion. The former is
buffered by deoxygenated haemoglobin in tissues,
and the latter can be exchanged with plasma
chloride ions. In lung capillaries these reactions are
reversed: bicarbonate enters erythrocytes, binds to
hydrogen ions recently released from oxygenated
haemoglobin, and dissolves into CO2 and water.

Capnometry is a measurement of end tidal CO2

partial pressure (PETCO2). PETCO2 closely approx-
imates PACO2 at the end of normal expiration in
conditions with normal perfusion and ventilation,2

and therefore makes the difference between PaCO2

and PETCO2 minimal.3 In healthy individuals there
is essentially no alveolar dead space which
represents the volume of gases in non-perfused
alveoli. This means that PETCO2 equals PACO2 and
with correct sampling P(a–A)CO2 difference equals
P(a–ET)CO2 difference, which makes PETCO2 a good
estimate of PaCO2.

Factors that influence PETCO2 can be divided in
four groups: metabolism, circulation, ventilation,
and technical errors. When production (metabo-
lism) and transfer (circulation) of CO2 are con-
stant, PETCO2 values reflect changes in ventilation,
and vice versa.1 2 Under normal conditions of
ventilation and circulation in the awake indivi-
dual, there is a 0–2 mm Hg gradient between
PETCO2 and PaCO2, and the gradient increases up to
6 mm Hg in intubated patients under general
anaesthesia.4

CAPNOMETRY IN MONITORING AND
DIAGNOSTICS
Along with ventilatory and circulatory monitoring,
changes in PETCO2 allow early diagnosis of

Abbreviations: CO2, carbon dioxide; CPR,
cardiopulmonary resuscitation; PACO2, alveolar carbon
dioxide partial pressure; PaCO2, arterial carbon dioxide
partial pressure; PETCO2, end tidal carbon dioxide partial
pressure; PvCO2, venous carbon dioxide partial pressure
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hypermetabolic episodes like hyperthermia after general anaes-
thesia, since greater tissue production of CO2 in such
circumstances leads to increased delivery of CO2 to the lungs.1

Measurement of PETCO2 during mechanical ventilation has been
used traditionally in evaluating the adequacy of ventilation
because of its relationship with PaCO2. In the prehospital setting
capnometry is also used to confirm correct tracheal tube
placement,5 to monitor efficacy of cardiopulmonary resuscita-
tion (CPR),6 and to confirm the return of spontaneous
circulation after successful CPR.7 8

Confirmation of correct endotracheal tube placement is of
paramount importance because oesophageal intubation
increases morbidity and mortality if unrecognised.
Capnometry, and capnography with typical waveform in
particular, are the most reliable methods to confirm tracheal
intubation.5

In cardiac arrest PETCO2 values decrease abruptly almost to
zero. They increase with the start of chest compressions during
CPR, and as spontaneous circulation resumes they return to
normal or above normal levels.9 As the cardiac arrest occurs,
cardiac output no longer serves as a conduit between the large
peripheral tissue compartment where production of CO2 is
generated, and the smaller central pulmonary compartment
where elimination of CO2 takes place. The result is accumula-
tion of CO2 in the tissues and a drastic fall in alveolar and
consequently end tidal CO2. Therefore initial values of PETCO2

after endotracheal intubation and resumed ventilation are low.
Initiation of chest compressions restores a fraction of normal
cardiac output and begins to wash CO2 out of the peripheral
tissue compartment, where CO2 is now produced in part by
aerobic metabolism and in part by anaerobic metabolism. The
latter is caused by buffering of metabolic acids by bicarbonate,
which leads to carbonic acid production and its dissociation to
CO2 and water.10 11

Establishing cardiac output with CPR re-establishes CO2

transport and causes alveolar CO2 tension to increase which
ultimately results in increased PETCO2 values. But cardiac output
produced by closed chest compressions is only a fraction of
normal cardiac output, so the PETCO2 values are usually lower
than normal. Return of spontaneous circulation is usually
indicated by a rapid increase in PETCO2 since normal or near-
normal cardiac output increases alveolar and therefore end tidal
CO2 partial pressure.8 However, initial and final values of PETCO2

of (10 mm Hg during CPR proved to predict mortality,12 13

which makes capnometry also an important tool in the
prognostication of cardiac resuscitation.7 14 Capnometry in
CPR thus provides information about efficacy of chest
compressions, return of spontaneous circulation, and prognosis
of outcome after cardiac arrest.

Capnometry can also help to differentiate an asphyxic from
primary cardiac arrest,10 15 detect waning neuromuscular
blockade, and serves as an additional diagnostic tool in
pulmonary thromboembolism.16 17 In patients with asphyxia
as the cause of cardiac arrest, initial PETCO2 values after
endotracheal intubation are much higher than in patients with
primary cardiac arrest due to ventricular fibrillation and/or
ventricular tachycardia.15 An animal study by Bende et al
reached the same conclusion, explaining that in asphyxial
cardiac arrest it is the continued cellular production of CO2 and
continued cardiac output before cardiac arrest that allows
delivery of CO2 to the lungs which ultimately increases alveolar
CO2.18 This in turn is reflected as high PETCO2 once ventilation is
resumed during CPR. However, the difference in PETCO2

between primary and secondary cardiac arrest is no longer
present after 1 min of CPR, as described in the study by Grmec
et al.15 The initial PETCO2 difference thus serves as a good
diagnostic tool for reassuring emergency physicians to take

measures appropriate for asphyxial cardiac arrest, since the
hypoxia is a potentially reversible cause of cardiac arrest.15

In pulmonary thromboembolism PETCO2 values are charac-
teristically lower than normal because of diminished pulmon-
ary perfusion and increased alveolar dead space, and
consequently decreased CO2 elimination capability. Retention
of CO2 leads to increased venous carbon dioxide partial pressure
(PvCO2) and PaCO2, which ultimately increases arterial to end
tidal CO2 gradient.6 This helps further in reaching a correct
diagnosis, especially in silent pulmonary embolism.17

In haemorrhage, changes in PETCO2 reflect haemodynamic
changes.19 This allows not only prompt recognition of circula-
tory compromise but also more precise fluid resuscitation.
Capnometry is the only continuous non-invasive monitoring
method in the prehospital setting which gives indirect
information about tissue perfusion through its correlation with
oxygen supply dependency during haemorrhagic shock.20 It is
also of value in predicting outcome from major trauma and
trauma surgery where P(a–ET)CO2 difference .10 mm Hg can
predict mortality even if blood pressure is normalised.4 21

PETCO2 values can be measured in intubated and non-
intubated patients,22 even though hyperventilation can alter
measurements. The latter is successfully achieved with a nasal
cannula,23 especially in children.24 Measurements taken
through a facial mask are less accurate compared to a nasal
cannula because of increased dead space, which decreases the
amount of CO2 in expired air.25 Oxygen supplementation can
affect measurements of PETCO2, but not significantly.26

However, there are some limitations in the interpretation of
PaCO2 on the basis of PETCO2 measurements in critically ill
patients. In any cardiorespiratory dysfunction, including
breathing patterns which cause incomplete alveolar emptying,
and some pharmacological interventions which are used in
treating low flow states, P(a–A)CO2 and consequently P(a–
ET)CO2 difference increases due to ventilation–perfusion mis-
match.1 27 28 These limitations do not support PETCO2 measure-
ments as a substitute for PaCO2 measurements.3

Nevertheless, in the prehospital setting it is sudden changes
of PETCO2 that make capnometry an important tool for early
detection of mainly circulatory and/or ventilatory compromise
in the critically ill, and not the relationship between PETCO2 and
PaCO2. A sudden decrease in PETCO2 is caused by sudden
hypotension, sudden hyperventilation, massive pulmonary
embolism, occlusion of the endotracheal tube, and disconnec-
tion or leakage in the artificial ventilatory system, while
decreased CO2 production and hyperventilation cause a more
gradual decline in PETCO2.3 A sudden increase in PETCO2 is
caused by a sudden increase in cardiac output, such as when
spontaneous circulation returns after CPR, and following an
injection of sodium bicarbonate, while hypoventilation and
increased CO2 production cause more gradual increases in CO2.3

Therefore, a final interpretation of PETCO2 must be made after
all parameters which affect measurements have been
accounted for—that is, ventilation and circulatory parameters,
metabolism, and technical errors.

Sublingual capnometry shows great promise for the early
recognition of patients at risk of tissue hypoperfusion, hypoxia,
and shock progression,29 because it avoids disturbances of
measurements caused by hyperventilation.

PETCO2 as an indicator of haemorrhage and tissue
perfusion adequacy
In uncontrolled haemorrhage, cardiac output and blood
pressure decrease. In early stages of haemorrhage, cardiac
output decreases before changes in blood pressure can be
detected. The relationship between cardiac output and
PETCO2,7 19 30 even in low flow states,31 makes PETCO2 an indicator
of changes in cardiac output. Shibutani et al and Wahba et al
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showed that haemodynamic changes lead to immediate
changes in PETCO2; this makes PETCO2 a good indicator of an
early stage haemorrhage due to early detection of changes in
cardiac output.32 33

According to Fick’s principle, cardiac output equals the
relationship between oxygen consumption and arteriovenous
difference in oxygen concentration. Decreased cardiac output
leads to decreased tissue oxygen consumption. Under physio-
logical conditions oxygen consumption is constant because
oxygen supply is greater than its consumption. A critical
decrease in oxygen supply makes oxygen consumption supply-
dependent. This marks the initiation of anaerobic metabolism.
Increased lactate, hypercapnia in gastric mucosa blood vessels,
and increased arteriovenous difference in CO2 partial pressure
all indicate tissue hypoperfusion and hypoxia at this point.34

Guzman et al showed that with constant minute ventilation,
changes in PETCO2 correlate well with changes in oxygen
consumption in haemorrhagic shock, and these changes also
indicate the onset of oxygen supply dependency during
haemorrhagic shock.20 Fluid resuscitation increases oxygen
consumption due to its increased delivery, which ultimately
increases PETCO2.

CAPNOMETRY GUIDED FLUID RESUSCITATION IN
UNCONTROLLED INTERNAL HAEMORRHAGE
The strategy of fluid resuscitation in hypovolaemic shock
caused by haemorrhage has been thoroughly debated in recent
years. Aggressive fluid resuscitation dilutes clot factors,
dislodges formed blood clots, and leads to further bleeding,
especially in parenchymal organ trauma.35 These factors are
associated with increased blood loss and mortality,36 so that
aggressive fluid therapy may be harmful to patients with
uncontrolled thoraco-abdominal haemorrhage. However,
aggressive fluid resuscitation is still considered appropriate in
controllable haemorrhage (head and isolated extremity
trauma) and in trauma patients without a palpable pulse.37 In
patients with uncontrolled thoraco-abdominal haemorrhage,
limited or hypotensive fluid resuscitation avoids detrimental
effects of an early aggressive resuscitation, decreases mortality,
and is currently considered more appropriate for short periods
before surgical repair, even at the expense of tissue perfu-
sion.36 38–40

Nevertheless, at an early stage of haemorrhage blood
pressure can still be normal, even with substantial blood loss,
and significant delay in fluid resuscitation, based on clinical
signs and normal blood pressure measurement alone, can be
detrimental because of decreased tissue perfusion and shock
progression. Changes in PETCO2 are an immediate reaction to
haemorrhage, and any decrease in cardiac output would cause
PETCO2 to decrease, indicating haemorrhage in progress. It is an
intriguing thought that capnometry guided fluid resuscitation
could avoid delay in initiating fluid resuscitation due to prompt
detection of these haemodynamic changes. It could also help to
enhance tissue perfusion by adjusting further fluid adminis-
tration, while keeping the blood pressure in appropriate ranges

at the same time. This could significantly improve not only the
clinical evaluation but also the fluid administration strategy in
patients with uncontrolled haemorrhage.

On the other hand, there is also a possibility of severe under-
resuscitation as a potential complication of hypotensive fluid
resuscitation strategy in haemorrhagic shock. Capnometry
could prevent this complication through prompt detection of
a decrease in PETCO2. In order to maintain normal or near
normal PETCO2 values, and tissue perfusion as well, increased
amounts of infused fluids help to overcome this problem. More
research is needed to confirm the usefulness of capnometry in
decision making in patients with uncontrolled internal hae-
morrhage.

CONCLUSION
In the prehospital setting capnometry is an important tool in
the diagnosis, monitoring, and prediction of outcome. Even
though there are some limitations of PETCO2 monitoring in
critically ill patients, sudden changes in PETCO2 promptly reflect
circulatory and/or ventilatory compromise. Prompt reaction to
acute haemodynamic changes in patients with constant minute
ventilation, together with other measures of clinical evaluation,
helps in timely detection of patients at risk in the prehospital
setting. For that reason capnometry, especially sublingual, can
also be an important non-invasive monitoring method in
patients with uncontrolled internal haemorrhage in the
prehospital setting, together with the control of fluid resuscita-
tion through indirect control over tissue perfusion, especially in
limited fluid resuscitation. This could ultimately help to impede
shock progression and further bleeding at the same time.
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